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Abstract

A parametric study has been undertaken using direct nu-
merical simulations (DNS) of forced compressible particle-
laden flow in order to determine the validity of the com-
parison between PIV flow fields and LES Reynolds/Favre
filtered flow fields. This requires solving the 3D Navier-
Stokes equations and particle dynamics in a periodic do-
main where important parameters include the Reynolds
number, Mach number, Particle diameter, filter width and
ratio of solenoidal to dilatational dissipation. Tentative
results of the simulations are presented.

Introduction

The Reynolds filtering and Favre filtering techniques are
commonly used to filter velocity fields in compressible
large-eddy simulations (LES). LES solves a filtered version
of the Navier-Stokes equations so that it may differentiate
between the turbulent scales that are resolvable by the
mesh and the sub-grid scales that cannot be resolved and
therefore are required to be modeled. The filtering opera-
tion in LES is generally done via the spatial convolution
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where G is the filter function and ∆ is the cut-off spatial
scale while φ(ξ) and φ̄(x) represents a unfiltered and fil-
tered variable in space. In Reynolds averaged LES the
filtered velocity is determined via the direct application of
equation 1 producing

ui = ūi+u
′
i (2)

where ūi is the filtered velocity term and u′
i
is the sub-grid

velocity term. In contrast, Favre averaging is defined as

ui =
ρui
ρ̄
+u′′i = ũi+u

′′
i (3)

where ũi is the filtered velocity term and u′′
i
is the sub-grid

velocity term. For compressible flows ūi , ũi and Favre
averaging is generally used due to the reduction in the
number of subgrid scale terms that need to be modeled.

Particle image velocimetry (PIV) determines a flow’s ve-
locity field by cross-correlating the positions of groups
particles within the flow across time samples. Panda
et al. [9] and Garnier et al. [5] both state that PIV produces
Reynolds averaged velocity fields. However no quan-
titative analysis or proof of this can be found in current
literature. To establish similaritywith awell designed PIV
experiment only particles with small Stokes numbers and

therefore small diameters are considered. The average ac-
celeration of a small particle due to local Stokes drag is
defined by Varaksin [14] as

∂upi
∂t
=

wi

τp
(4)

where τp is the relaxation time of the particle, upi is the
particle velocity and ui is the velocity of the carrier fluid at
the particles position. If τp remains constant (The particle
Stokes number Stkp ≪ 1) then it would be expected that
the particle follows the Reynolds averaged velocity field
due to the lack of dependency on the carrier fluid’s density.
However in general τp will fluctuate as the particle trav-
els and is dependent on the carrier fluid’s thermodynamic
properties. It is therefore important to understand the
difference between the dynamics of a particle in an un-
filtered compressible flow field and the Reynolds/Favre
filtered flow velocity at the particle’s position. In this
study a parametric analysis is undertaken at a variety of
fluid and particle conditions in order to gain a basic under-
standing of the validity of comparing Reynolds and Favre
averaged velocity fields with those found experimentally
using particle image velocimetry.

Governing Equations and Numerical Methods

Fluid Dynamics

The continuity, momentum and energy equations that
govern turbulent compressible flow in non-dimensional
form are
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where ρ is the density, ui the velocity vector, E the total
energy, p the pressure, τi j the stress tensor, qi the heat
flux and fi the forcing acting on the fluid. In this analysis
the internal energy forcing fe is assumed to be fe = −ui fi
such that for homogeneous turbulence the total energy
will remain constant. The stress tensor and heat flux are
defined as
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where the reference Mach number M0 = u0/
√
RT0, in

which R is the gas constant, the reference Reynold’s num-
ber Re0 = ρ0L0u0/µ0 and Pr is the Prandtl number. The
variables in these equations have been non dimensional-
ized by the reference values L0 for length, u0 for velocity,
ρ0 for density, L0/u0 for time, T0 for temperature, µ0 for

viscosity and ρ0u
2
0
for pressure and energy. For an ideal

gas the equation of state and total energy are defined as

p =
ρT

M2
0
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ρuiui
2
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.

Consistent reference parameters and relationships defined

for this analysis are T0 = 288.15K, R = 287J.kg−1K−1, Pr =
0.7 and µ = T0.76. Two important statistical quantities of
homogeneous and isotropic turbulence are the turbulent
Mach number

Mt =M0
urms
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〉 (5)

and the Taylor Reynolds number
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where urms =
√
uiui/3 and λ = (1/3)
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Tomaintain a statistically stationary turbulentMach num-
ber and Taylor Reynolds number the partial wavenumber
forcingmethodology of Petersen and Livescu [10] is used.
Forcing is applied separately to the solenoidal and dili-
tational velocity fields in the wavenumber band between

0 ≤ k <
√
6. This allows the statistical average solenoidal

dissipation (ǫstarget ) and dilitational dissipation (ǫdtarget ) to

be controlled. To reduce the number of simulation param-

eters the model ǫstarget/ǫdtarget ≈ α1M2
t proposed by Sarkar

et al. [12] is used. FromDNSsimulations [12] and [3] found
that α1 = 1.0 provides a reasonable fit for isotropic turbu-
lence and is the value used for all simulations. It should
be noted however that [8] describes uncertainty of α1 with
respect to flow structure giving a range of 0.5≤ α1 ≤ 1.0 for
homogeneous shear flows at low Reynolds numbers. The
total dissipation, ǫtarget = ǫstarget + ǫdtarget , is determined by

the target Kolmogorov scale where ηtarget = (ν3/ǫtarget)
1/4.

The initial solenoidal velocity field is generated via the
methodology in Blaisdell [2] with an initial kinetic energy
spectrum

E(k) = 16u2rms
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where k0 = 2/λ0 is the most energetic wavenumber. The
initial dilitational velocity, pressure fluctuations and den-
sity fluctuations are calculated using the method by Ris-
torcelli and Blaisdell [11]. This method is only valid for
nearly incompressible flow therefore if Mttarget > 0.1 the
initial velocity fluctuations are reduced such thatMt = 0.1
and the target turbulent Mach number is reached through
forcing of the flow.

The numerical methodology for the fluid phase is based
on the Hybrid method in Johnsen et al. [7]. For convective
terms 6th and 10th order central differencing schemes are
used in smooth regions of the flowwhile Roe flux-spliting

with 5th orderWENO interpolation as defined by Shu [13]
is used in discontinuous regions of the flow. The regions
are determined by the shock-sensor developed by Ducros
et al. [4]. In the smooth regions all non-linear terms are
calculated in their conservative split-form equivalent to
method E in [2]. In discontinuous regions the viscous
fluxes are calculated in their non-conservative from. Time
integration is performed using the 3rd order TVD Runge-
Kutta defined by Gottlieb et al. [6].

For general LES simulations, such as those employing
the Smagorinsky, structure function, or dynamic sub-grid
scale models; no explicit filtering is applied to the fluid
state. Instead the grid acts as an ideal filter with a cutoff
wavenumber equal to its Nyquist wavenumber such that

Ĝ(k) =

{

1 k ≤ kmax

0 k > kmax
(8)

where Ĝ is the filter function in wavenumber space and
kmax is the Nyquist (maximum) wavenumber of the grid.
Therefore to generate the Reynolds and Favre filtered ve-
locities an ideal low-pass filter with a Blackmann window
is used. The discrete representation of this filter is
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φ(x+∆i)

where N + 1 is the filter width and (k∆) f is the cutoff

wavenumber ratio. For all simulations the filter width
is set to 41 and the cutoff ratio (k∆) f = 0.2 such that the

ideal cutoff wavenumber is 20% of the grid’s Nyquist
wavenumber. By setting (k∆) f to a constant value the

size of the parametric space is reduced.

Particle Dynamics

The Stokes number of a particle is defined as

Stkp =
τp

τ f
(10)

where τp is the relaxation time of the particle and τ f is a
characteristic timescale of the carrier fluid which is taken
to be the eddy turnover time τ f = λ/urms. It is assumed in
this analysis that the particle’s diameter is small in com-
parison with the velocity fluctuations of the carrier fluid
that contain a majority of the turbulent kinetic energy.
Therefore the magnus, turbophoresis and thermophoresis
forces are considered small enough relative to the aero-
dynamic drag such that they can be safely ignored. The
dimensionless particle relaxation time due to Stokes drag
is derived from Varaksin [14] as

τp = Re0
ρpd2p

18µC
(11)

where the particle’s Reynolds number is

Rep = Re0
ρ
√
wiwidp

µ
(12)
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Figure 1: Normalized kinetic energy spectra.

and C = 1+0.15Re0.687p is the Schiler-Naumann correction

factor. For homogeneous isotropic turbulence there is no
Staffman force acting on the particle due to the lack of
meanvelocity gradients in theflow. AreviewbyBalachan-
dar et al. [1] confirmed that for small particles in isotropic
turbulence Equation 11 is sufficiently accurate. It is also
assumed that the particle density is equivalent to the fluid
density such that the buoyancy and gravitational forces
can be ignored. This is a reasonable assumption for com-
parison with PIV experiments in which the seeding parti-
cles are chosen such that their density are as close to the
working fluid’s as possible.

High-order spline interpolation is used to determine the
fluid state at each particles’ position. The spline polyno-
mial is of degree 22 which provides an relative accuracy
of at least 99% for wavenumbers below half the Nyquist
limit. Interpolation of a 3D function is determined via
successive 1D interpolations of the required grid points
along each axis.

Simulation Methodology and Parameters

In order to conserve computational resources the simu-
lations are initial run on a low quality grid until the flow
has achieved a statistically stationary state. All simulation
reached a statistically stationary state within 150 to 250
eddy turn-over times. The state fields are then spectrally
interpolated to a larger grid such that keη > 1.5 where ke is
the computational wavenumber for which the error in rel-
ative wavenumber due to the central differencing scheme
is≈ 10%. The simulation statistics and parameters for each
of the test cases can be seen in Table 1. The normalized
kinetic energy spectra for each of the cases may be seen
in Figure 1. Based on the kinetic energy spectra the spline
interpolation of the velocity field has an absolute error of
≈ 10−6.

For each test case 8192 particles were simulated at relative
diameters of d/L0 = 0.05,0.1,0.2. Initially the particles are
uniformly distributed across the domain with an initial
velocity equal to the flow velocity at their respective po-
sitions. Due to the large time iteration constraints posed

by the particles with small diameters (∆t ∝ d−2) each test
case has currently only achieved a simulation time of ap-
proximately 0.5 eddy turn-over times such that the current
results presented should be read as tentative.

Results and Analysis

The relative difference in velocity ue between the parti-
cle velocity (up) and flow velocity (uφ) at the particle’s
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Figure 2: Average error of particle velocity with respect
to the unfiltered, Reynolds fitlered and Favre filtered flow
velocities for the simulation Mttarget = 0.5, Reλtarget = 200.

Solid lines represent the unfiltered error (φ = u), dashed
lines represent the Reynolds filtered error (φ = r) and the
dotted lines represent the Favre filtered error (φ = f ).
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Figure 3: Ensemble averaged error of particle velocity
with respect to the unfiltered, Reynolds filtered and Favre
filteredflowvelocities as a functionofMachnumber. Solid
lines represent the unfiltered error (φ = u), dashed lines
represent the Reynolds filtered error (φ= r) and the dotted
lines represent the Favre filtered error (φ = f ).
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where φ = u represents the unfiltered flow velocity, φ = r
represents the Reynolds filtered flow velocity and φ = f
represents the Favre filtered flow velocity. The average of
ue is shown for a single test case in Figure 2. As may be
seen the time it takes for ue to reach a relatively steady
state increases with respect to the particle diameter and
is due to the larger relaxation times of larger particles.
The larger relaxation time also increases the average of ue
due to the particles’ decreased response to velocity fluc-
tuations. To understand the relationship between ue and
simulation parameters Reλ and Mt Figure 3 plots the en-
semble average (〈〈〉〉) for eddy turnover times t > 0.3 for
each test case. As expected 〈〈ue〉〉 increaseswith increasing
particle diameter and Reλ. However the decrease in 〈〈ue〉〉
with increasingMach number is unexpected and its cause
is currently being investigated. Figure 4 plots the differ-

ence δ〈〈ue〉〉=
∣
∣
∣
∣

〈〈

uer
〉〉

−
〈〈

ue f
〉〉∣∣

∣
∣ between the Reynolds and

Favre filtered results in Figure 3. For both Reynolds and
Favre filtered flow velocities δ〈〈ue〉〉 increases with Mach
number as is expecteddue to the increasingdensity fluctu-
ations. However formoderate values ofMt the differences
between the two filtering regimes is insignificant (< 0.3%).



Mttarget Reλtarget

Low
Quality
Grid Size

High
Quality
Grid Size 〈Reλ〉 〈Mt〉

〈

η
〉(

10−3
)

〈λ〉 〈L〉

%E(k)
between

0 ≤ k∆ < 0.2

0.1 100 1253 2563 84±10 0.091±0.004 51±2.5 0.93±0.097 13.3 99.7

0.1 200 1253 5123 210±32 0.094±0.003 39±2.5 1.11±0.16 26.7 99.4

0.3 100 1253 2563 84±12 0.27±0.012 52±2.7 0.92±0.11 13.3 99.7

0.3 200 1253 5123 231±33 0.28±0.016 42±1.5 1.24±0.12 26.7 99.6

0.5 100 1253 2563 86±16 0.46±0.04 54±2.9 0.94±0.11 13.3 99.7

0.5 200 2433 5123 200±32 0.47±0.03 40±1.5 1.07±0.11 26.6 99.5

Table 1: Test cases’ parameters and statistics. The ensemble averaged (〈〉) quantities are given along side their range defined
as ± 3 standard deviations. L denotes the domain size.
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Figure 4: Difference of the ensemble averaged error be-
tween the particles’ velocitieswith respect to the Reynolds
filtered flow velocities and error between the particles’ ve-
locities with respect to the Favre filtered flow velocities as
a function of Mach number.

Conclusions

Initial simulations of particle-laden compressible turbu-
lent flow has been completed to determine the valid-
ity of the comparison between PIV flow fields and LES
Reynolds/Favre filtered flow fields. From the initial re-
sults the difference between the different filtering regimes
is found to be small with respect to the velocity induced
by the particles’ dynamics. For real PIV experiments the
difference is likely to be smaller than themeasurement un-
certainty. However the statistics measuring the difference
in velocity have not yet been determined to a sufficient
accuracy to make reasonable judgments from the data.
Simulations are continuing with a wider parametric space
that will allow for definitive conclusions to be drawn.
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